
1. *Chapter 1, Section 1.1, Question 006

Assume that $f(x) = \frac{x+1}{x^2+4}$ for every real number x . Evaluate and simplify $f\left(\frac{b}{3}\right)$.

$$f\left(\frac{b}{3}\right) =$$

2. *Chapter 1, Section 1.1, Question 009

Assume that $f(x) = \frac{x+8}{x^2+1}$ for every real number x . Evaluate and simplify

$$f(x^2+2).$$

$$f(x^2 + 2) =$$

□

3. *Chapter 1, Section 1.1, Question 017

Assume that $g(x) = \frac{x-9}{x+4}$. Simplify the expression $\frac{g(a+t) - g(a)}{t}$.

$$\frac{g(a+t) - g(a)}{t} =$$

□

4. *Chapter 1, Section 1.1, Question 036

A formula $f(x) = \frac{\sqrt{3x+4}}{x-8}$ has been given defining the function f but no domain has

been specified. Find the domain of the function f , assuming that the domain is the set of real numbers for which the formula makes sense and produces a real number.

The domain of the function f is

5. *Chapter 1, Section 1.3, Intelligent Tutoring Question 04

Shifting a graph up or down

Suppose f is a function and $a > 0$. Define functions g and h by

$$g(x) = f(x) + a \text{ and}$$

$$h(x) = f(x) - a.$$

Then

- the graph of g is obtained by shifting the graph of f up a units
- the graph of h is obtained by shifting the graph of f down a units.

*Part 1

Assume that f is the function defined on the interval $[1, 2]$ by the formula $f(x) = 2x^2 + 6$. The graph of g is obtained by shifting the graph of f down 4 units.

Write the formula for g .

$$g(x) =$$

***Part 2**

What is the domain of g ?

[

1 , **2**]

***Part 3**

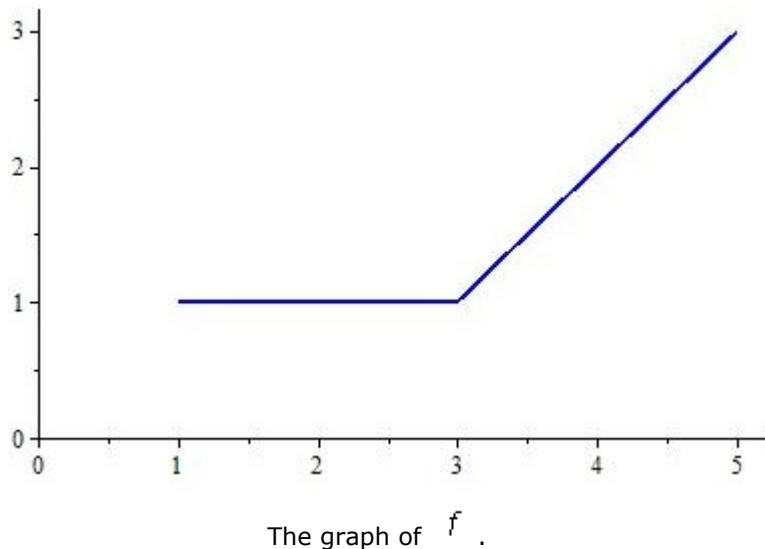
What is the range of g ?

[

4 , **10**]

6. *Chapter 1, Section 1.3, Question 22

Assume f is a function whose domain is the interval $[1, 5]$, whose range is the interval $[1, 3]$, and whose graph is the figure below.



Consider the function $g(x) = f(x + 2)$.

(a) Find the domain of g .

Enter your answer in interval notation.

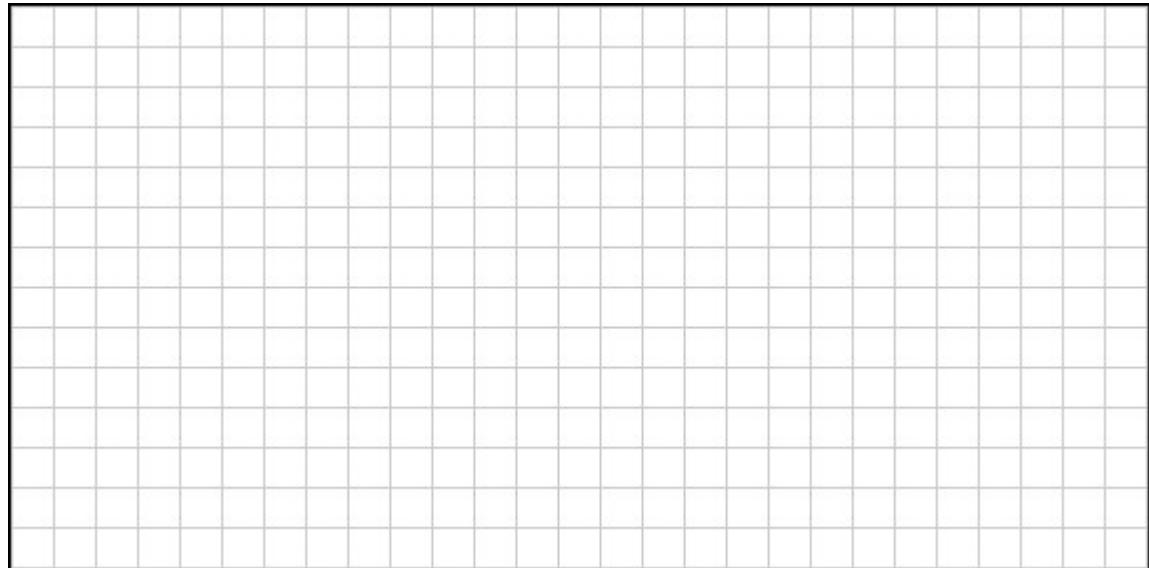
$D(g) =$

(b) Find the range of g .

Enter your answer in interval notation.

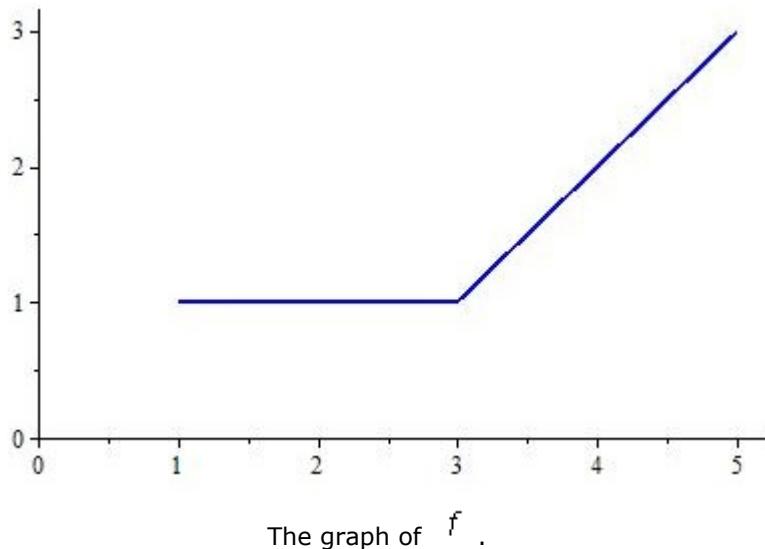
$$R(g) =$$

(c) Sketch the graph of g .



7. *Chapter 1, Section 1.3, Question 30

Assume f is a function whose domain is the interval $[1, 5]$, whose range is the interval $[1, 3]$, and whose graph is the figure below.



Consider the function $g(x) = 2f(x) + 3$.

(a) Find the domain of g .

Enter your answer in interval notation.

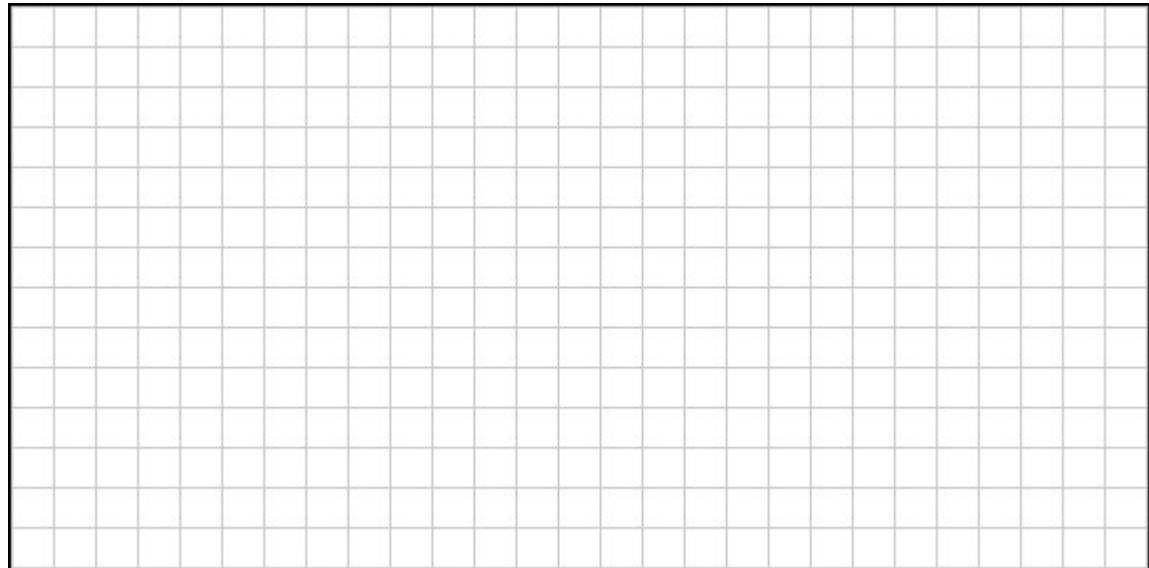
$D(g) =$

(b) Find the range of g .

Enter your answer in interval notation.

$$R(g) =$$

(c) Sketch the graph of g .



8. *Chapter 1, Section 1.3, Question 060

Suppose that to provide additional funds for higher education, the federal government adopts a new income tax plan that consists of the 2011 income tax plus an additional \$100 per taxpayer. Let g be the function such that $g(x)$ is the 2011 federal income tax for a single

person with taxable income x dollars, and let h be the corresponding function for the new income tax plan.

Write a formula for $h(x)$ in terms of $g(x)$.

$$h(x) =$$

9. *Chapter 1, Section 1.4, Question 039

Suppose

$$h(x) = \left(\frac{x^2 + 3}{x - 10} - 1 \right)^3.$$

(a) If $f(x) = x^3$, then find a function g such that $h = f \circ g$.

$$g(x) =$$

□

(b) If $f(x) = (x - 1)^3$, then find a function g such that $h = f \circ g$.

□

$g(x) =$

10. *Chapter 1, Section 1.4, Question 040

Suppose

$$h(x) = \sqrt{\frac{1}{x^2 + 9} + 18}.$$

(a) If $f(x) = \sqrt{x}$, then find a function g such that $h = f \circ g$.

$$g(x) =$$

(b) If $f(x) = \sqrt{x + 18}$, then find a function g such that $h = f \circ g$.

$$g(x) =$$

Find functions f and g , each simpler than the given function $h(x) = (x^2 - 2)^2$, such that $h = f \circ g$.

a. $f(x) = x^2 - 2, g(x) = x^2$

b. $f(x) = x^2, g(x) = x - 2$

c. $f(x) = x, g(x) = x - 2$

d. $f(x) = x, g(x) = x^2 - 2$

e. $f(x) = x^2, g(x) = x^2 - 2$

Answer: e _____

12. *Chapter 1, Section 1.4, Question 045

Find functions f and g , each simpler than the given function $h(x) = \frac{12}{5 + x^2}$, such that $h = f \circ g$.

a. $f(x) = 5 + x^2, \quad g(x) = \frac{12}{x}$

b. $f(x) = 5 + x, \quad g(x) = \frac{12}{x^2}$

c. $f(x) = \frac{12}{x}, \quad g(x) = 5 + x^2$

d. $f(x) = \frac{12}{x^2}, \quad g(x) = 5 + x$

e. $f(x) = \frac{12}{x}, \quad g(x) = \frac{12}{5+x}$

Answer: c _____

13. *Chapter 1, Section 1.4, Question 047

Find functions f , g and h , each simpler than the function $T(x) = \frac{6}{8+x^2}$, such that

$$T = f \circ g \circ h.$$

a. $f(x) = 8 + x$, $g(x) = \frac{6}{x}$, $h(x) = x^2$

b. $f(x) = x^2$, $g(x) = \frac{6}{x}$, $h(x) = 8 + x$

c. $f(x) = 6x$, $g(x) = \frac{1}{x^2}$, $h(x) = 8 + x$

d. $f(x) = x^2$, $g(x) = 8 + x$, $h(x) = \frac{6}{x}$

e. $f(x) = \frac{6}{x}$, $g(x) = 8 + x$, $h(x) = x^2$

Answer: e _____

14. *Chapter 1, Section 1.4, Question 048

Find functions f , g , and h , each simpler than the function $T = \sqrt{5 + x^2}$ such that

$$T = f \circ g \circ h.$$

a. $f(x) = \sqrt{5x}$, $g(x) = 1 + x$, $h(x) = x^2$

b. $f(x) = \sqrt{x}$, $g(x) = 5 + x$, $h(x) = x^2$

c. $f(x) = x^2$, $g(x) = 5 + x$, $h(x) = \sqrt{x}$

d. $f(x) = x^2$, $g(x) = \sqrt{x}$, $h(x) = 5 + x$

e. $f(x) = \sqrt{5x}$, $g(x) = 5 + x$, $h(x) = x^2$

Answer: b _____

15. *Chapter 1, Section 1.4, Question 052

Suppose f is a function and a function g is defined by

$$g(x) = f\left(-\frac{4}{5}x\right).$$

(a) Write g as the composition of f and one or two linear functions.

a. If $h(x) = -4x$ and $p(x) = \frac{1}{5}x$, then $g = p \circ h \circ f$.

b. If $h(x) = -4x$ and $p(x) = \frac{1}{5}x$, then $g = h \circ p \circ f$.

c. If $h(x) = -\frac{4}{5}x$, then $g = f \circ h$.

d. If $h(x) = -\frac{4}{5}x$, then $g = f \circ h$.

e. If $h(x) = -\frac{4}{5}x$, then $g = h \circ f$.

Answer: d _____

(b) Describe how the graph of g is obtained from the graph of f .

a. The graph of g is obtained by vertically stretching the graph of f by a factor of $\frac{5}{4}$ and then flipping across the horizontal axis.

b. The graph of g is obtained by horizontally stretching the graph of f by a factor of $\frac{4}{5}$ and then flipping across the horizontal axis.

c. The graph of g is obtained by horizontally stretching the graph of f by a factor of $\frac{5}{4}$ and then flipping across the horizontal axis.

d. The graph of g is obtained by horizontally stretching the graph of f by a factor of $\frac{5}{4}$ and then flipping across the vertical axis.

e. The graph of g is obtained by horizontally stretching the graph of f by a factor of $\frac{4}{5}$ and then flipping across the vertical axis.

Answer: d _____