
1. Chapter 0, Section 0.2, Question 006

Expand the given expression.

$$(x + y - r)(z + w - t)$$

$$(x + y - r)(z + w - t) =$$

2. Chapter 0, Section 0.2, Question 005

Expand the given expression.

$$(x - y)(z + w - t)$$

$$(x - y)(z + w - t) =$$

3. Chapter 0, Section 0.2, Question 007

Expand the given expression.

$$(2x + 5)^2$$

$$(2x + 5)^2 =$$

4. Chapter 0, Section 0.2, Question 012

Expand the given expression.

$$(x - 6y - 7z)^2$$

$$(x - 6y - 7z)^2 =$$

5. Chapter 0, Section 0.2, Question 013

Expand the given expression.

$$(x + 3)(x - 5)(x + 12)$$

$$(x + 3)(x - 5)(x + 12) =$$

6. Chapter 0, Section 0.2, Question 017

Expand the following expression.

$$xy(x + y)\left(\frac{1}{x} - \frac{1}{y}\right)$$

$$xy(x + y)\left(\frac{1}{x} - \frac{1}{y}\right) =$$

7. Chapter 0, Section 0.2, Question 023

Simplify the given expression as much as possible.

$$3(7m + 9n) + 7m$$

$$3(7m + 9n) + 7m =$$

8. Chapter 0, Section 0.2, Question 024

Simplify the given expression as much as possible.

$$6(7m + 2(n + 4p)) + 2n$$

$$6(7m + 2(n + 4p)) + 2n =$$

9. Chapter 0, Section 0.2, Question 030

Simplify the given expression as much as possible.

$$\begin{array}{r} \frac{16}{15} \\ \hline \frac{17}{8} \end{array}$$

$$\frac{\frac{16}{15}}{\frac{17}{8}} =$$

10. Chapter 0, Section 0.2, Question 031

Simplify the given expression as much as possible.

$$\frac{m+1}{5} + \frac{6}{n}$$

$$\frac{m+1}{5} + \frac{6}{n} =$$

11. Chapter 0, Section 0.2, Question 036

Simplify the given expression as much as possible.

$$\frac{7}{8} \cdot \frac{n-6}{9} + \frac{13}{7}$$

$$\frac{7}{8} \cdot \frac{n-6}{9} + \frac{13}{7} =$$

12. Chapter 0, Section 0.2, Question 038

Simplify the given expression as much as possible.

$$\frac{x-4}{8} - \frac{7}{y+2}$$

$$\frac{x-4}{8} - \frac{7}{y+2} =$$

13. Chapter 0, Section 0.2, Question 042

Simplify the expression as much as possible.

$$\frac{w-1}{w^3} - \frac{4}{w(w-6)}$$

$$\frac{w-1}{w^3} - \frac{4}{w(w-6)} =$$

14. Chapter 0, Section 0.2, Question 044

Simplify the given expression as much as possible.

$$\frac{1}{y} \left(\frac{1}{x-y} - \frac{1}{x+y} \right)$$

$$\frac{1}{y} \left(\frac{1}{x-y} - \frac{1}{x+y} \right) =$$

15. Chapter 0, Section 0.2, Question 048

Simplify the given expression as much as possible.

$$\begin{array}{r} x-8 \\ \hline y+9 \\ \hline y-9 \\ \hline x+8 \end{array}$$

$$\frac{\frac{x-8}{y+9}}{\frac{y-9}{x+8}} =$$

16. Chapter 0, Section 0.3, Question 005

Find all numbers x satisfying the given equation.

$$|2x - 4| = 11$$

Enter the exact answers in increasing order.

$$x =$$

or $x =$

17. Chapter 0, Section 0.3, Question 008

Find all numbers x satisfying the given equation.

$$\left| \frac{9x + 8}{x - 10} \right| = 11$$

Enter the exact answers in increasing order.

$$x =$$

or $x =$

18. Chapter 0, Section 0.3, Question 021

Write the given union as a single interval.

$$[-6, 8] \cup (-5, 2)$$

19. Chapter 0, Section 0.3, Question 034

A copying machine works with paper that is 8.5 inches wide, provided that the error in the paper width is less than 0.04 inch.

(a) Write an inequality using absolute values and the length W of the paper that gives the condition that the paper's width fails the requirements of the copying machine.

(b) Write the set of numbers satisfying the inequality in part **(a)** as a union of two intervals.

20. Chapter 0, Section 0.3, Question 036

Write the given set as an interval or as a union of two intervals.

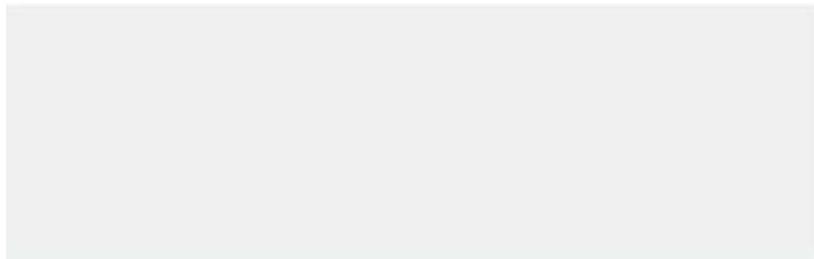
$$\left\{ x : |x + 7| < \frac{1}{500} \right\}$$

21. Chapter 0, Section 0.3, Question 042

Write the given set as an interval or as a union of two intervals.

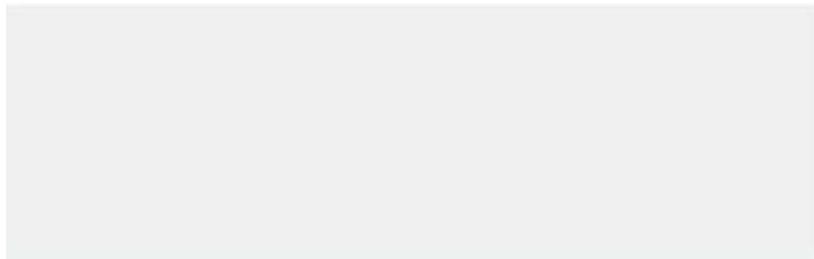
$$\left\{ x : |6x - 5| < \frac{1}{7} \right\}$$

22. Chapter 0, Section 0.3, Question 046


Write the given set as an interval or as a union of two intervals.

$$\{x: |x + 8| \geq 7\}$$

23. Chapter 0, Section 0.3, Question 048


Write the given intersection as a single interval.

$$[-17, -7) \cap [-13, -3)$$

24. Chapter 0, Section 0.3, Question 050

Write the given intersection as a single interval.

$$(-12, -5) \cap [-10, -8]$$

25. Chapter 0, Section 0.3, Question 058

Find all numbers x satisfying the given inequality.

$$\frac{x - 4}{11x + 1} < 2$$

Enter the exact answer in interval notation.