Miscellaneous Updates

The very most recent news is that I have decided to join University of Illinois at Chicago to work on a PhD in Learning Sciences, with a focus on Mathematics Education. I’m very excited to join the Learning Sciences Research Institute (LSRI) in continuing my research!

I’m moving this July, and this site will see significantly more activity; especially WRT notes on math education! I’ll be compiling notes and some definitions here as a resource

Some Highlights of 2018-2019:

  • Spring 2018:
    • Received the Sally Casanova Scholarship for the academic year 2018-19 (See page 14 of this booklet).
    • Participated in the California Forum for Diversity in Graduate Education
    • Finalized all the code for my thesis
    • Teaching:
      • Math 199 – Precalculus
      • Math 227 (x2) – Calculus II (as TA)
  • Summer 2018
    • Generalized code to any dimension, final verification of code with Dr. Gubeladze
    • Worked on implementing California Executive Order 1110 – part of a team with tenured faculty working on creating the curriculum for stretch courses.
    • Created a gradebook template and a lesson plan template for general use.
  • Fall 2018:
    • Applied to twelve PhD programs, and had a bit of an existential crisis because PhD applications can be grueling.
    • Worked on writing out my thesis, as most of my work was coding up to this point.
    • Defended my master’s thesis, “Computational Verification of the Cone Conjecture”
    • Teaching:
      • Math 107 – Math for Business Calculus I
      • Math 197 – Prelude to Calculus I
  • Spring 2019
    • Out of 12 I was waitlisted at one and accepted into two.
    • Finalized edits for my master’s thesis and submitted to archives
    • Updated LaTeX template for Masters Thesis for STEM majors at SFSU
    • Graduated from the Masters program!
    • First semester to finish grading finals not on the day that grades are due 😀
    • Teaching:
      • Math 108 – Math for Business Calculus II
      • Math 198 – Prelude to Calculus II

Reflection: Planning/Time Management

As a Teacher

  • Pre-Calculus
    • Lesson Planning is taking a lot less time this time around, since I spent a lot of time documenting the lessons from last year. Over-planning was actually an issue last semeseter; I would never actually complete everything I planned, and that was mildly frustrating. Also, there’s an element of improvisation that happens depending on the mood of the classroom, which means that scripting every sentence is simply not possible anyway.
  • Calculus II
    • The first two weeks I only prepared by rereading the text on the sections that the lead professor went over, but on the second week students asked me questions that definitely stomped me because I had not seen the problem before hand. Now, I ask students to email me their questions before the TA session, so that I can prepare with care. Planning short lectures on Calculus II material has been easier after that change in preparation, especially with access to great tools.

As a Student

  • Algebra
    • I’m really glad to be practicing with SAGE, but I’ve honed in on specific problems and end up spending significant time cleaning up code instead of doing proofs. I need to find a balance in what I’m focusing on when learning.
  • Real Analysis II
    • I should really be spending more time on this course. The lectures in this cource has been a blessing for preparing for Calculus II TA sessions, since it helps get me into the “mood” to do Calculus. 🙂
  • Combinatorics
    • Obsessing over the details in this class takes too long. I’m in a similar situation with Algebra, but there’s this one is more like I spend 4-5 hours on one proof and run out of time for the other problems.

There’s a lot of juggling, and I have to get better at this soon before the midterm season.

Reflection- Group Work: Size & Clarity

I’m wondering how group activities can be done with 40+ students; I often give short, paired activities during lecture, which (hopefully) helps with engagement, but if I want to give a longer “exploration” activity in class, there are challenges.

Group Size

Checking in with each group is takes a significant amount of time, scaling linearly. I tried to keep group size to 3-4 students, but dividing students into groups of 4-5 lead to having about 8-10 groups. The down time caused some groups to finish faster than others. There must be an optimal ratio for the number of students to square foot of classroom. I currently have 40 students, but the rooms are a lot smaller than the previous semester, I must alter the group activity plans. I also had 80 minutes sessions on Tues/Thurs instead of 50 and a much larger classroom for discussions/group work in the 4th hour. My lesson plans will require more adjustments, I suspect.

Some groups had members forging ahead before everyone understood, and that’s always a challenge as well. I wonder if larger groups are a good idea, because conversations between more than 5 students often turn to a few pairs and few solo working in parallel…

Clarity: Instruction and Feedback

This time around, when I lead the group activity I focused on the clarity of my instructions, and I’m trying a different approach this semester compared to last. Previously, I gave handouts with specific procedure, but it was confusing for some students. This time, I tried a different approach, where I  verbally and visually give instructions on the board and forgo all printed handouts in order to allow for students to make their own notes instead of using data sheets. I think I might bring back the data sheet for the later activities, so that the students can know what I specifically expect from them. I should specify that students should use technology to assist in graphing and calculations.

In terms of feedback, I tried to ask questions and check for understanding, but the number of groups is high, which means I must spend less time per group, or make the group size larger. If I maintain that the groups have no more than 5 people, then I will have at least 8 groups – which can cause my feedback to the students to be less precise and more brief. Perhaps I can take a vote with my students, to see if they prefer trying larger groups, given the challenges above?

Looking back, I admire my high school teachers who managed to deal with 30 students at a time, and were able to conduct experiments in labs, with open flames, too.

Reflection: Following My Passions

When I was in my late teens to early twenties, I knew I liked math but I wanted to try everything that would require application of math: I jumped from applied math to physics to engineering. I loved the process of learning, and I took a lot of different classes, and by the time I was halfway through the second semester of Mechanical Engineering courses, I finally realized that I was only really interested in the math, and talking about the math.

Then today, I went digging through my time-capsules on the internet. I have blogs scattered across a lot of different platforms, and I found this post over on Hubpages that I wrote in 2009. I’m pretty sure this reaffirms that I’ve always wanted to teach math.

Looking back, I’m glad that I took a long, winding path. I needed to grow a lot spiritually and emotionally before I was ready to take on teaching. Hopefully I’ll maintain my capacity for growth in the upcoming years.

Teacher Evaluations & Reflection, Fall 2016

Teacher Evaluations are out at SFSU. 😀

From my students’ responses, I learned that I can improve in the following ways:

  • Plan what I will write on the board in more detail instead of such a rough sketch,
  • “Don’t let nerves cause mistakes” – definitely happened 2-3 times where I did a problem incorrectly because I tried to wing it on the board…
  • More intensive examples that can tie different concepts together before the midterm (where they do see synthesized word problems),
  • On Universal Design:
    • Group work that involve manipulatives, geared for kinesthetic/tactile learners,
    • Audio / Visual learners balance – I tend to write a conclusion and verbally say a paragraph of explanations.
  • On Long Term Planning:
    • More group work for inverse trig functions and beyond,
    • Maybe building a story that can be used for the concept questions during class?
    • Manage expectations earlier – students will need to work and figure out a lot of stuff on their own,
    • Create systems that can help students organize all the information – give suggestions on how to take notes, maybe?
    • Give more time to do Chapters 4-6, Trigonometry chapters of the book.
  • On Class Policy:
    • Attendance and participation should be recorded more in detail,
    • Be better about grading and returning stuff promptly – I definitely procrastinate on handing back quizzes sometimes. (No one complained about this but I still feel bad about it.)

Looking forward to teaching next semester! I will teach one class of precalculus and TA one section of Calc II. I wonder how different TA’ing for Calculus II will feel. 🙂