Activity Resources:
Here’s the link to the actual latex code used to build the above file.
LaTeX is a powerful document preparation system. This system is free and is available across many operating systems, such as Windows, Mac OS and most distributions of Linux. A successor of TeX, LaTeX was created in the 1983 by Leslie Lamport. This computer typesetting software was originally created for academic papers in STEM fields, and since has grown in popularity in other fields because of its power to create many types of paper and digital documents common in academic fields. For those who are aiming to write a long text such as a dissertation, thesis or a book, a major attraction to learning LaTeX is its ability to handle large papers and provide uniform, beautiful, and professional formatting. LaTeX handles all the mundane tasks of formatting, so you can focus on writing the content!
For some samples of what you can create with LaTeX, visit the Notes and Work section of this blog. Below are some reasons why you might be interested in using LaTeX:
There are some contrasts with WYSIWYG (What You See is What You Get) word processors like Microsoft Word or Open Office.
There are some advantages of using WYSIWYG processors:
When common word processors attempt to handle large files, any major modifications to the file can break the table of contents, and automatic numbering of the tables/figures/lists are not reliable. Furthermore, for students working in multiple operating systems, transitioning between different operating systems using the same latex code will generate the exact same document – this precision is simply not guaranteed with most WYSIWYG processors.
With the above in mind, if you’re interested in learning about LaTeX as a beginner, I’ll be giving an introductory workshop at LSRI on November 13th, 2019.
Coming soon:
Disclaimer: Featured image source https://en.wikibooks.org/wiki/LaTeX
Curve sketching is an important application of derivatives. Here’s an example with a polynomial, with pictures to help assist understanding:
I have gathered quizzes that relate directly to the upcoming midterm, as well as included a sample midterm. Please feel free to use these for practice! If you have trouble with the material, visit this page for additional resources. Don’t forget to grab a free version of wolfram alpha pro to help you if you’re enrolled at San Francisco State University!
There’s a lot of juggling, and I have to get better at this soon before the midterm season.
I have gathered quizzes that relate directly to the upcoming midterm, as well as included a sample midterm. Please feel free to use these for practice! If you have trouble with the material, visit this page for additional resources. Don’t forget to grab a free version of wolfram alpha pro to help you if you’re enrolled at San Francisco State University!
SF State has a site license for Mathematica. Under this site license, Mathematica can be installed without further cost on any computer owned by San Francisco State University, by SF State faculty, or by SF State students. This software works on Windows, Macintosh, and Unix.
Under the terms of the site license negotiated by CSU, free WolframAlpha Pro accounts are also now available to our faculty, students, and staff.
If you are an SFSU student, click here for a free WolframAlpha Pro account.
If you are a SFSU student and you want to download the Mathematica software to your computers, then follow the instructions below:
For both Mathematica and WolframAlpha Pro requests on the links above, it is important that only sfsu.edu email addresses be used. Requests from other email addresses will be rejected.
I’m wondering how group activities can be done with 40+ students; I often give short, paired activities during lecture, which (hopefully) helps with engagement, but if I want to give a longer “exploration” activity in class, there are challenges.
Checking in with each group is takes a significant amount of time, scaling linearly. I tried to keep group size to 3-4 students, but dividing students into groups of 4-5 lead to having about 8-10 groups. The down time caused some groups to finish faster than others. There must be an optimal ratio for the number of students to square foot of classroom. I currently have 40 students, but the rooms are a lot smaller than the previous semester, I must alter the group activity plans. I also had 80 minutes sessions on Tues/Thurs instead of 50 and a much larger classroom for discussions/group work in the 4th hour. My lesson plans will require more adjustments, I suspect.
Some groups had members forging ahead before everyone understood, and that’s always a challenge as well. I wonder if larger groups are a good idea, because conversations between more than 5 students often turn to a few pairs and few solo working in parallel…
This time around, when I lead the group activity I focused on the clarity of my instructions, and I’m trying a different approach this semester compared to last. Previously, I gave handouts with specific procedure, but it was confusing for some students. This time, I tried a different approach, where I verbally and visually give instructions on the board and forgo all printed handouts in order to allow for students to make their own notes instead of using data sheets. I think I might bring back the data sheet for the later activities, so that the students can know what I specifically expect from them. I should specify that students should use technology to assist in graphing and calculations.
In terms of feedback, I tried to ask questions and check for understanding, but the number of groups is high, which means I must spend less time per group, or make the group size larger. If I maintain that the groups have no more than 5 people, then I will have at least 8 groups – which can cause my feedback to the students to be less precise and more brief. Perhaps I can take a vote with my students, to see if they prefer trying larger groups, given the challenges above?
Looking back, I admire my high school teachers who managed to deal with 30 students at a time, and were able to conduct experiments in labs, with open flames, too.
When I was in my late teens to early twenties, I knew I liked math but I wanted to try everything that would require application of math: I jumped from applied math to physics to engineering. I loved the process of learning, and I took a lot of different classes, and by the time I was halfway through the second semester of Mechanical Engineering courses, I finally realized that I was only really interested in the math, and talking about the math.
Then today, I went digging through my time-capsules on the internet. I have blogs scattered across a lot of different platforms, and I found this post over on Hubpages that I wrote in 2009. I’m pretty sure this reaffirms that I’ve always wanted to teach math.
Looking back, I’m glad that I took a long, winding path. I needed to grow a lot spiritually and emotionally before I was ready to take on teaching. Hopefully I’ll maintain my capacity for growth in the upcoming years.
Teacher Evaluations are out at SFSU. 😀
From my students’ responses, I learned that I can improve in the following ways:
Looking forward to teaching next semester! I will teach one class of precalculus and TA one section of Calc II. I wonder how different TA’ing for Calculus II will feel. 🙂